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Fourth-order exponential finite difference methods for
boundary value problems of convective diffusion type
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SUMMARY

Methods based on exponential finite difference approximations of h4 accuracy are developed to solve one
and two-dimensional convection–diffusion type differential equations with constant and variable convec-
tion coefficients. In the one-dimensional case, the numerical scheme developed uses three points. For the
two-dimensional case, even though nine points are used, the successive line overrelaxation approach with
alternating direction implicit procedure enables us to deal with tri-diagonal systems. The methods are
applied on a number of linear and non-linear problems, mostly with large first derivative terms, in
particular, fluid flow problems with boundary layers. Better accuracy is obtained in all the problems,
compared with the available results in the literature. Application of an exponential scheme with a
non-uniform mesh is also illustrated. The h4 accuracy of the schemes is also computationally demon-
strated. Copyright © 2001 John Wiley & Sons, Ltd.

KEY WORDS: boundary layer; convection–diffusion; exponential scheme; finite differencing; non-
uniform mesh

1. INTRODUCTION

The convective diffusion equation is of primary importance in many physical systems,
especially those involving fluid flow. Numerical solutions of such model equations with general
finite differencing are known to give spatially oscillatory results. Several upwinding schemes
have been developed over the years to obtain reasonably accurate solutions and to eliminate
the spurious oscillations. Most of the numerical schemes use centred differencing for the
second-order derivative diffusion term and some kind of upwind differencing for the convec-
tion terms. The stability of the first-order upwind scheme is good, but this has a strong
diffusive effect and suffers because of low accuracy. The second-order upwind scheme has
undesirable propagation of errors and stability problems.
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General finite difference approximation for the convection–diffusion problem was discussed
by Anderson et al. [1]. A review of the upwind schemes, including the third-order upwind
scheme of Leonard [2], was given by Patel et al. [3] and Leschziner [4]. Kawamura et al. [5]
developed a third-order accurate upwind scheme by modifying the conventional second-order
upwind scheme. This resulted in a complex five-point approximation for the convective term,
which makes it difficult to approximate the points adjacent to the boundaries. Dekema and
Schultz [6] developed higher-order methods for the convection–diffusion equation using the
Taylor series expansion, where the higher-order derivatives were replaced by using the
differential equation. Application of these methods to the two-dimensional non-linear prob-
lems appears to be quite difficult due to the complexity involved in the calculation of the
parameters. The concept of a tensor viscosity method for differencing the convective terms for
hyperbolic flows has been described by Dukowicz and Ramshaw [7]. Abarbanel and Kumar [8]
employed the original equation in two-dimensions to obtain a nine-point spatially O(h4),
temporally O(h2) scheme for the Euler equations; they also extended it to three dimensions.

Finite difference approximations involving exponential coefficients and interaction between
the coefficients of the convection–diffusion equation produce schemes that are satisfactory in
both accuracy and stability. The exponential finite difference scheme of the convective
diffusion equation was first introduced by Allen and Southwell [9] to solve the second-order
partial differential equation governing the transport of vorticity. The methods were analysed
by Dennis [10,11] who found that the schemes were superior to the standard difference
procedures and also developed several extensions of the methods. Spalding [12] and Roscoe
[13] had also used different illustrations and independently developed similar exponential type
schemes. Roscoe calls these exponential type schemes as unified difference schemes and used
them for solving Navier–Stokes equations.

Dennis and Hudson [14] gave a basic formula of h3 accuracy using an upwind approxima-
tion to a higher-order derivative and corrected it by adding a deferred correction to make it an
h4 scheme. These schemes were called as compact finite difference approximations. Finite
difference schemes of exponential and polynomial orders for solving convection–diffusion
problems were developed by Iyengar and Radhakrishna Pillai [15]. Compact finite difference
schemes of order h4 for the two-dimensional convection–diffusion type equations with
constant and variable convection coefficients were developed by Mackinnon and Johnson [16].
By using the original model equation to represent the truncation terms, higher-order deriva-
tives were replaced with lower-order derivatives and then approximated on a compact stencil.
A perturbational h4 compact exponential finite difference scheme was developed by Chen et al.
[17] for the convective diffusion equation and numerical examples including one- to three-
dimensional problems were solved to illustrate the behaviour of the developed exponential
schemes.

The objective of the present study is to develop exponential type finite difference schemes to
accurately represent convective diffusion equations. In ordinary differential equations, this
includes two-point boundary value problems and second-order singular perturbation problems.
In partial differential equations, the well-known Burgers equation, Navier–Stokes equations
and elliptic singular perturbation problems fall into this category. In this study, only steady
state problems are considered. Exponential type schemes are developed to solve linear and
non-linear problems in one and two dimensions, in particular, fluid flow problems with
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boundary layers. Exponential schemes with non-uniform mesh are also derived to solve some
specific problems. Comparisons with previously published results are given and the h4 accuracy
of the schemes is also computationally demonstrated using double precision arithmetic.

2. BASIC PROBLEM

To describe the basic approach, consider the steady, convection–diffusion model problem

a
�2u
�x2+b

�u
�x

=0 0�x�1, u(0)=0, u(1)=1 (1)

where a and b are constants. Here a is the conductivity, b is the convective velocity and the
solution u may represent heat, vorticity, etc. The exact solution to (1) is

u(x)= (esx−1)/(es−1) (2)

where s= −b/a. When s becomes very large and positive, the u�x curve is nearly horizontal
at zero with a steep rise as x approaches unity. When s is large and negative, the horizontal
part lies near unity and the steep part near x=0. For the numerical evaluation of such
problems with boundary layers, a uniform mesh is unsuitable as u(x) has large gradients and
thus changes rapidly over small intervals. It is well known that central difference approxima-
tion to Equation (1) yields oscillatory solution if the cell Reynolds number �bh/a ��2.

Earlier investigators have generally concluded that for a convection–diffusion problem,
there is no ‘best formulation’ for a first-derivative or second-derivative expression in isolation:
it may be the combination of the first and second derivatives depending on the particular
differential equation and the relative magnitude of the coefficient terms. Exponential-type
schemes or finite difference approximations that had coefficients involving the exponential
function can be effective for solving the above mentioned problems. For particular problems
with boundary layer characteristics, accurate representation can be achieved by using non-
uniform meshes and the numerical scheme has to be accordingly applied.

3. DEVELOPMENT OF THE SCHEMES: ONE-DIMENSIONAL CASE

3.1. Uniform mesh

Consider the steady one-dimensional non-homogeneous model problem

auxx+bux= f(x) 0�x�1 (3)

with the necessary boundary conditions, where a and b are constants and f(x) is a sufficiently
smooth function of x. The domain [0, 1] is uniformly subdivided into n intervals with xi= ih,
h=xi+1−xi, ui=u(xi), fi= f(xi) and i�{0, 1, 2, . . . , n}. Consider a finite difference approxi-
mation for Equation (3) at a grid point xi as
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c1Dh
2ui+c2Dhui= fi (4)

where Dhui= (ui+1−ui−1)/2h and Dh
2ui= (ui+1−2ui+ui−1)/h2 are the central difference

approximations for the first and second derivatives and c1 and c2 are parameters to be
determined. Equation (4) can be written in the form

c1Dh
2ui+c2Dhui= (auxx+bux)i (5)

Making this equation exact for 1, x and e− (bx)/a (Gartland [18]), c1 and c2 can be determined.
Hence the finite difference scheme (4) can be written as

bh
2

coth
�bh

2a
�

Dh
2ui+bDhui= fi (6)

Equation (6) is an exponential scheme of second-order accuracy for the convective diffusion
model problem (3). This scheme gives rise to a diagonally dominant tri-diagonal system.
Scheme (6) is similar to the method developed by Mackinnon et al. [16] using the original
model equation to represent the truncation terms. Equation (6) can also be written as

b
h(1−s)

[sui−1− (1+s)ui+ui+1]= fi (7)

where s=e− (bh)/a
, which is a variant of the scheme developed by Allen and Southwell [9],

Roscoe [13] and Iyengar and Radhakrishna Pillai [15].

3.2. Non-uniform mesh

For problems with boundary layers or where the variable has large gradients and thus changes
rapidly on small intervals, the usage of non-uniform mesh becomes an essential aspect for the
accurate representation of the solutions.

Let the successive steps of a non-uniform mesh be h1, h2, . . . , hi, . . . , so that xk=�j=1
k hj.

Consider the finite difference approximation for Equation (3) at a grid point xi as

c1Dnh
2 ui+c2Dnhui= fi (8)

where c1 and c2 are parameters to be determined and

Dnhui=
hi

2ui+1− (hi
2−hi+1

2 )ui−hi+1
2 ui−1

hihi+1(hi+hi+1)

Dnh
2 ui=

2[hiui+1− (hi+hi+1)ui+hi+1ui−1]
hihi+1(hi+hi+1)

(9)

Equation (8) can be rewritten as
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c1Dnh
2 ui+c2Dnhui= (auxx+bux)i (10)

Making this scheme exact for 1, x and e− (bx)/a, the values of c1 and c2 are obtained as

c1= −
b
2

hi
2(s̄i+1−1)−hi+1

2 (si−1)
hi(s̄i+1−1)+hi+1(si−1)

, c2=b (11)

where si=e(bhi )/a and s̄i+1=e− (bhi+1)/a. For uniform mesh with hi=hi+1=h, c1=
(bh/2) coth[(bh)/(2a)] and results in the scheme (6). Scheme (8) with (11) for the non-uniform
mesh can also be expressed in another form as

b [(1− s̄i+1)ui−1− (si− s̄i+1)ui+ (si−1)ui+1]
hi(s̄i+1−1)+hi+1(si−1)

= fi (12)

where si and s̄i+1 are as defined earlier. This is a second-order accurate scheme that produces
a diagonally dominant tri-diagonal system.

Scheme (12) can also be obtained by another approach. Consider the finite difference
approximation for Equation (3) at a grid point xi as

c−1ui−1+c0ui+c1ui+1= (auxx+bux)i (13)

where c−1, c0 and c1 are the parameters to be determined. Making Equation (13) exact for 1,
x and e− (bx)/a with the non-uniform mesh, we obtain the above approximation (12).

3.3. De�elopment of a three-point fourth-order method

Consider the finite difference approximation for Equation (3) at a grid point xi as

�Dh
2ui+bDhui=c1 fi−1+c2 fi+c3 fi+1 (14)

where

�=
bh
2

coth
�bh

2a
�

(15)

Dh
2 and Dh are as defined earlier and c1, c2 and c3 are the parameters to be determined.

Equation (14) can be rewritten as

�Dh
2ui+bDhui=c1(auxx+bux)i−1+c2(auxx+bux)i+c3(auxx+bux)i+1 (16)

Equation (16) is exact for 1 and e− (bx)/a. Making it exact for x, x2 and x3, and solving the
resulting equations we obtain the coefficients as
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c1=
1
6
−

(�−a)(2a+bh)
2(bh)2 , c2=

2
3
+

2a(�−a)
(bh)2 , c3=

1
6
−

(�−a)(2a−bh)
2(bh)2 (17)

Scheme (14) with (17) for solving the model problem (3) is of fourth-order accuracy and
produces a diagonally dominant tri-diagonal system.

3.4. Variable–coefficient case

Consider the steady one-dimensional non-homogeneous model problem

auxx+b(x)ux= f(x) 0�x�1 (18)

with the necessary boundary conditions, where a is a constant and b and f vary spatially. This
equation is consistent with singular perturbation problems.

Consider the finite difference scheme with the uniform mesh for Equation (18) at a grid
point xi as

�iDh
2ui+biDhui=c1 fi−1+c2 fi+c3 fi+1 (19)

where

�i=
bih
2

coth
�bih

2a
�

, c1=
1
6
−

(�i−a)(2a+bih)
2(bih)2 , c2=

2
3
+

2a(�i−a)
(bih)2

c3=
1
6
−

(�i−a)(2a−bih)
2(bih)2 (20)

The truncation error (TE) of scheme (19) is given by

TE= (auxx+bux− f )i+
�bh2

12a
(auxxx+buxx− fx)+

h2

12
(auxxxx+buxxx− fxx)

�
i

+O(h4)

(21)

Hence, scheme (19) is only of second-order accuracy. This scheme can be made fourth-order
accurate by adding to it the following approximation to the O(h2) term in (21)

�bh2

12a
bxux+

h2

12
(2bxuxx+bxxux)

n
i

�
�bh2

12a
DhbDhu+

h2

12
(2DhbDh

2u+Dh
2bDhu)

n
i

(22)

Hence, a fourth-order accurate exponential type scheme for solving the differential equation
(18) is given by

ADh
2ui+BDhui=c1 fi−1+c2 fi+c3 fi+1 (23)

where
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A=�i+
h2

6
Dhbi, B=bi+

h2

12
�bi

a
Dhbi+Dh

2bi
�

(24)

and �i, c1, c2 and c3 are given by Equation (20).
When b(x)=b is a constant, scheme (23) reduces to the diagonally dominant scheme (14).

Scheme (23) was applied (Section 5) to a number of problems with boundary layer and also
problems of singular perturbation type. The numerical solutions for these problems were
obtained by applying the scheme and solving the resultant tri-diagonal systems. The scheme
was also applied with large number of subdivisions with uniform and non-uniform meshes,
which show the stability of the method. The fourth-order accuracy of the scheme is also
demonstrated numerically (Problem 5). Very accurate results were obtained for all the
problems even with coarse grid sizes and the values obtained are compared with previous
published results.

4. EXTENSION OF THE SCHEMES TO TWO-DIMENSIONS

4.1. Variable coefficients case

Scheme (23), developed for the one-dimensional variable coefficient case, can be extended to
the two-dimensional case. Consider the boundary value problem

auxx+b(x, y)ux+cuyy+d(x, y)uy= f(x, y) (25)

where a and c are constants and b, d and f vary spatially. This equation is consistent with the
two-dimensional Navier–Stokes equations for constant viscosity. Let the step-length in the
x-direction be h=1/n and in the y-direction be k=1/m, where n and m are the numbers of
subdivisions in the x- and y-directions respectively. Extending scheme (23) to the two-
dimensional case, the approximation for Equation (25) at a point (xi, yj) can be written as

�
�1+

h2

6
Dhb

�
ij

Dh
2uij+

�
b+

h2

12
�b

a
Dhb+Dh

2b
�n

ij

Dhuij+
�

�2+
k2

6
Dkd

�
ij

Dk
2uij

+
�

d+
k2

12
�d

c
Dkd+Dk

2d
�n

ij

Dkuij=c1 fi−1, j+c2 fij+c3 fi+1, j+c4 fi, j−1+c5 fi, j+1 (26)

where

�1=
bh
2

coth
�bh

2a
�

, �2=
dk
2

coth
�dk

2c
�

(27)

Dhuij= (ui+1, j−ui−1, j)/(2h), Dkuij= (ui, j+1−ui, j−1)/(2k)

Dh
2 and Dk

2 are the central difference operators for the second derivatives with respect to x and
y respectively and c1, c2, c3, c4 and c5 are the parameters to be determined.
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Writing the Taylor series expansions of the left and right sides of (26), using the differential
equation and adding to scheme (26) the difference approximation to the leading terms of the
truncation error, we obtain the fourth order accurate scheme to (26) at (xi, yj) as

[ADh
2+BDk

2+CDh+D1Dk+EDhDk+GDhDk
2+HDh

2Dk+KDh
2Dk

2]uij=Fij (28)

where

A=�1+
h2

6
Dhb, B=�2+

k2

6
Dkd

C=b+
h2

12
�b

a
Dhb+Dh

2b
�

+
k2

12
�d

c
Dkb+Dk

2b
�

D1=d+
h2

12
�b

a
Dhd+Dh

2d
�

+
k2

12
�d

c
Dkd+Dk

2d
�

E=
bd
12
�h2

a
+

k2

c
�

+
1
6

(h2Dhd+k2Dkb) (29)

G=
b
12
�h2c

a
+k2�, H=

d
12
�k2a

c
+h2�, K=

1
12

(h2c+k2a)

�1=
bh
2

coth
�bh

2a
�

, �2=
dk
2

coth
�dk

2c
�

Fij=c1 fi−1, j+c2 fij+c3 fi+1, j+c4 fi, j−1+c5 fi, j+1

c1=
1
6
−

(�1−a)(2a+bh)
2(bh)2 , c2=

1
3
+

2a(�1−a)
(bh)2 +

2c(�2−c)
(dk)2

c3=
1
6
−

(�1−a)(2a−bh)
2(bh)2 , c4=

1
6
−

(�2−c)(2c+dk)
2(dk)2

c5=
1
6
−

(�2−c)(2c−dk)
2(dk)2

Scheme (28) uses a nine-point stencil. Even though nine points are used, the successive line
overrelaxation (SLOR) approach with an alternating direction implicit procedure enables us to
obtain the solutions of the problems by solving tri-diagonal systems. Accurate results were
obtained for several problems including a two-dimensional Navier–Stokes-type problem which
show the stability of the scheme. The fourth-order accuracy of scheme (28) is also illustrated
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numerically (Problem 7). A variant to this scheme was developed by Mackinnon and Johnson
[16] using a different approach. Explicit stability analysis of this scheme appears to be quite
complex (Dekema and Schultz [6], Mackinnon and Johnson [16]).

4.2. Constant coefficient case

Consider the boundary value problem

auxx+bux+cuyy+duy= f(x, y) (30)

where a, b, c and d are constants. In this case, scheme (28) simplifies as

[ADh
2+BDk

2+CDh+D1Dk+EDhDk+GDhDk
2+HDh

2Dk+KDh
2Dk

2]uij=Fij (31)

where A=�1, B=�2, C=b, D1=d

E=
bd
12
�h2

a
+

k2

c
�

G=
b
12
�h2c

a
+k2�, H=

d
12
�k2a

c
+h2�, K=

1
12

(h2c+k2a) (32)

Fij=c1 fi−1, j+c2 fij+c3 fi+1, j+c4 fi, j−1+c5 fi, j+1

and �1, �2, c1, c2, c3, c4 and c5 have the same form as in (29), but are constants. This scheme
is of fourth-order accuracy and uses a nine-point stencil.

5. COMPUTATIONAL RESULTS

The schemes developed in the previous sections are applied on a number of linear and
non-linear problems, which include boundary layer problems, elliptic singular perturbation
problems and a two-dimensional Navier–Stokes equation. For linear one-dimensional prob-
lems, a tri-diagonal system is solved and for non-linear problems, an iterative successive
overrelaxation procedure is associated with the tri-diagonal system solution. For two-
dimensional problems, the schemes are applied using a SLOR procedure along with an
alternating direction, which enables us to deal with tri-diagonal systems.

The iterative procedure is repeated until �u (k+1)−u (k)��� for all grid points, where k is the
iterative count and �=10−10 is the selected tolerance. Results are compared with the
corresponding exact solutions or previously published results. The fourth-order accuracy of the
schemes in one and two-dimensions are also demonstrated numerically for the variable
coefficient cases.
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5.1. One-dimensional constant coefficient problems

5.1.1. Problem 1 (Dekema and Schultz [6] and Segal [19]).

−�uxx+ux=0, u(0)=0, u(1)=1.0 (33)

The exact solution is given by u(x)= (ex/�−1)/(e1/�−1).
A detailed analysis of the problem is given in Dekema and Schultz [6] and Segal [19] and

they have stated that as � was decreased it was necessary to use a divided interval to obtain
accurate results. The left side of the interval [0, 1−8� ], was divided into n subdivisions each of
length h1= (1−8�)/n and the right side of the interval [1−8�, 1], was divided into m
subdivisions, each of length h2=8�/m. They found that better results could be obtained by
using the subregions [0, 0.999] and [0.999, 1.0].

Using the fourth-order accurate scheme (14) for constant coefficients, accurate results were
obtained even for very small � without going for the divided interval. For comparison purpose,
results were also obtained with divided intervals and scheme (12) was used to approximate the
equation at the dividing point. We note that the Dekema and Schultz [6] method is a O(h10)
method. The results are given in Table I. Some of the results in Table I are with the divided
intervals [0, 1−8� ] and [1−8�, 1] where n and m are the corresponding subdivisions as given
earlier. In Table I, for a fixed number of nodes, n=1000, the maximum absolute error goes
from 0.33×10−15 to 0.31×10−16 when � goes from 10−3 to 10−4. Results of Dekema and
Schultz [6] also show a similar behaviour. A similar behaviour was also noticed in some other
cases, especially when the maximum absolute error was very small. This behaviour may be due
to the fact that the range of the error is too small for a representation in double precision.

Results obtained by dividing the region into the two subregions [0, 0.999] and [0.999, 1.0] are
given in Table II. In Table II, the error for �=10−5, does not decrease when the number of
nodes increases. A similar behaviour is also seen with the results of Dekema and Schultz [6].
This type of behaviour was also noticed in some other cases, particularly when the maximum
absolute error was very small. Again, it may be because the range of the error is very small for
a representation in double precision.

5.1.2. Problem 2 (Dekema et al. [6] and Segal [19]).

−�uxx+ux=��2 sin �x+� cos �x, u(0)=0, u(1)=1.0 (34)

The exact solution is given by u(x)=sin �x+ (ex/�−1)/(e1/�−1).
This problem was analysed by Dekema and Schultz [6] in detail and they have obtained the

results with their O(h4), O(h6), O(h8) and O(h10) methods. They have stated that for all the
methods with �=10−5, it was necessary to use a very small overrelaxation factor (0.0125) and
initial values from the �=10−4 run, in order to obtain a converging solution. They also found
that better results could be obtained if they did not divide the region into the two subregions
[0, 1−8� ] and [1−8�, 1], but instead used the subregions [0, 0.999] and [0.999, 1.0].

We have obtained accurate results using the fourth-order scheme (14) which is even
comparable with the results obtained by the O(h10) method. For �=10−5 and 10−6, very
accurate results were obtained by our scheme even without resorting to the divided interval.
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Results are presented in Table III. Some of the results are obtained by using the subregions
[0, 1−8� ] and [1−8�, 1.0], where n and m are the corresponding number of subdivisions.
Table IV shows similar results using the subregions [0, 0.999] and [0.999, 1.0]. It was seen that
the new schemes consistently gave accurate results even for very small values of �. Maximum
absolute errors obtained by using the subregions [0, 0.999] and [0.999, 1.0] with n=4000 and
m=1000 for values of � up to 10−12 were in the order of 10−7.

5.1.3. Problem 3 (White [20]).

�uxx+ux−�u= −sin x, 0�x��, with u(0)=0, u(�)=0 (35)

The exact solution of the problem is given by

u(x)=
1

1+4�2 (A e(r1x)/�+B e(r2x)/�+2� sin x+cos x) (36)

where r1= −�(1+�1+4�2)/(2�), r2=2��(1+�1+4�2)−1, A= (1+er2)/(er1−er2), B=
(1+er1)/(er2−er1).

The calculations were carried out for various values of � with n=100 and 1000 using the
fourth-order scheme (14). This problem has a boundary layer at x=0 and accurate results
were obtained with the new exponential schemes. Maximum absolute errors obtained are given
in Table V.

5.2. One-dimensional �ariable coefficient problems

5.2.1. Problem 4 (Gartland [18]).

�uxx−
1

1+x
ux−

1
2+x

u= f(x) 0�x�1 (37)

u(0)=1+2−1/�, u(1)=e+2 (38)

and f(x) is computed from the exact solution

u(x)=ex+2− (1/�)(1+x)1+ (1/�) (39)

Table V. Maximum absolute errors for the fourth-order exponential scheme (14). Problem 3.

1� 10−810−610−410−2

0.13072×10−50.81832×10−8 0.16499×10−4 0.13068×10−5 0.13072×10−5n=100
(h=0.03142)

0.59632×10−70.76432×10−8 0.57727×10−7n=1000 0.59612×10−7 0.59631×10−7

(h=0.003142)

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 87–106
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The problem was solved with n=256, 512 and 1024 for various values of � using scheme (23)
for the variable coefficient case. Maximum absolute errors are given in Table VI.

5.2.2. Problem 5. This problem was considered by Chen et al. [17] for testing their perturba-
tional h4 exponential finite difference scheme. The model equation of fluid flow considered was
the Burgers equation

u
�u
�x

=
1

Re
�2u
�x2 0�x�1 (40)

with boundary conditions to give its solution as

u(x)= tanh[Re(1−2x)/4] (41)

For large values of the Reynolds number Re, the solution contains an abrupt change centred
at the point x=0.5. Initially, the calculations were carried out for Re=10 and the computa-
tional region 0�x�1 was distributed uniformly with 20 grid points (h=1/19) as was done by
Chen et al. [17]. The iterative procedure is repeated until the solution converges throughout the
domain with the tolerance �=10−10. Solutions obtained using the fourth-order exponential
scheme (23) and the O(h4) schemes of Dennis and Hudson [14] and Chen et al. [17] are given
in Table VII. To verify the O(h4) accuracy of the present scheme, computations were also
carried out using h=1/38. The ratio of the errors is approximately 16, confirming the O(h4)
accuracy of the scheme. In addition to this, log(E) versus log(h) was plotted with h=1/19 and
1/38, where E= �u(xi)−ui �. The slope of the straight line was evaluated and these values are
approximately 4, again confirming the O(h4) accuracy of the scheme. These slope values are
also given in Table VII.

For convection dominated cases with large Re, steep changes take place near the centre
point x=0.5. To resolve these steep changes and also for a more accurate representation, the
given interval [0, 1] was subdivided into the three intervals [0, 0.5−20� ], [0.5−20�, 0.5+20� ],
[0.5+20�, 1.0] where �=1/Re. The number of subdivisions for the corresponding subintervals
were selected as 10, 100 and 10 respectively. Because of the non-uniform mesh involved,
scheme (12) was used at the dividing point while scheme (23) was used at the other points.
Even though the h2 accurate scheme was used at the dividing point along with the h4 accurate
scheme for other points, accurate results were obtained. Using the non-uniform mesh, accurate
and smooth solutions were obtained with Re=500 and 105 and the maximum absolute errors

Table VI. Maximum absolute errors for the fourth-order exponential scheme
(23). Problem 4.

� 512n=256 1024

0.20554×10−80.20529×10−80.20541×10−81.0
10−1 0.17769×10−7 0.17876×10−7 0.17882×10−7

0.59980×10−7 0.29857×10−710−2 0.34610×10−7

0.73234×10−410−3 0.52059×10−5 0.30735×10−6

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 87–106
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were 0.88753×10−4 and 0.88787×10−4 respectively. The solutions near the central point 0.5
are presented in Figures 1 and 2.

5.3. Two-dimensional case

5.3.1. Problem 6. Consider the differential equation

uxx+uyy+�ux=0 (42)

with the boundary conditions

u(0, y)=y(1−y), u(1, y)=
�

y(1−y)−
2
�

�
e−�

and

u(x, 0)= −
2x
�

e−�x=u(x, 1)

The exact solution is

Figure 1. Solutions near the centre point for Re=500, Problem 5. Total number of nodal points in
[0, 1] : 121; [0.48, 0.52] : 51 (non-uniform mesh).

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 87–106
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Figure 2. Solutions near the centre point for Re=105, Problem 5. Total number of nodal points in
[0, 1] : 121; [0.4998, 0.5002] : 101 (non-uniform mesh).

u(x, y)=
�

y(1−y)−
2x
�

�
e−�x (43)

This problem has a boundary layer. Scheme (31) was used for solving this problem with n and
m as the number of subdivisions in the x- and y-directions respectively. SLOR with an
alternating direction procedure was used to obtain the solution of the system of equations.
Even though scheme (31) uses a nine-point stencil, this approach enables us to deal with
tri-diagonal systems. The method is stable and converged rapidly for all values of � attempted.
Results are presented in Table VIII.

Table VIII. Maximum absolute errors for scheme (31). Problem 6.

(n, m) �

10 40 102 103 104 105

0.18×10−20.18×10−20.13×10−20.86×10−3 0.18×10−20.10×10−3(10, 10)
0.65×10−4 0.54×10−3 0.84×10−3 0.12×10−2 0.13×10−2 0.13×10−2(10, 20)
0.16×10−4 0.24×10−3(20, 10) 0.11×10−20.11×10−20.10×10−20.64×10−3

0.62×10−5 0.97×10−4 0.25×10−3(20, 20) 0.43×10−3 0.45×10−3 0.46×10−3

0.96×10−6 0.17×10−4 0.83×10−4(40, 20) 0.25×10−3 0.27×10−3 0.27×10−3

0.38×10−6(40, 40) 0.68×10−5 0.33×10−4 0.10×10−3 0.11×10−3 0.11×10−3

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 87–106
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5.3.2. Problem 7. Consider the following two-dimensional model equations for fluid flow

�2u
�x2+

�2u
�y2−u

�u
�x

−�
�u
�y

= (2 sin y+sin x) cos x

�2�

�x2+
�2�

�y2−u
��

�x
−�

��

�y
= (sin y−2 sin x) cos y 0�x, y�� (44)

which have the exact solution

u(x, y)= −cos x sin y, �(x, y)=sin x cos y (45)

This problem is a modification of the one considered by Roscoe [13] as a test problem for
the developed methods which were similar to those of Allen and Southwell [9]. Dennis et al.
[11,14] used this problem to demonstrate and verify the h4 accurate method developed by
them. To illustrate the h4 accurate perturbational exponential scheme, Chen et al. [17]
simplified this problem by substituting the exact value of � in (44) and then considered only the
first equation for u. The terms on the right-hand side of (44) do not themselves constitute
possible pressure gradients to be truly representative of the two-dimensional Navier–Stokes
equations, but (45) satisfies the equation of continuity and the differential equations (44). Thus
the essential features of a model solution of the Navier–Stokes equations are preserved by this
problem.

Equations (44) have been solved using the exponential scheme (28) with the same step-length
h=�/20 in both the x- and y-directions. The iterative procedure consists of an overall
sequence of iterations between the two equations in (44) which itself is composed of a sequence
of a SLOR approach with an alternating direction implicit procedure for each equation. The
procedure was started with the initial values of u and � taken as the interpolated values from
the boundaries, and the iterative procedure was repeated until u and � converge throughout the
solution domain. For convergence, a tolerance �=10−10 was taken. The iterative procedure
converged rapidly. The results for u(0.7�, y) for values of y/� from 0.1 to 0.5 are given in
Table IX. The solutions obtained by the fourth-order accurate schemes of Dennis et al. [14]
and Chen et al. [17] are also given in Table IX. As mentioned earlier, Chen et al. [17] obtained
solutions for u by solving only the first equation in (44) as the exact values of � were used. It

Table IX. Solutions of Problem 7 with h=�/20 for u(0.7�, y), y/�=0.1–0.5.

Solution withChen et al. [17]Dennis et al. [14]Exact solutiony/�
scheme (28)

0.1816368 0.18163680.18163680.18163560.1
0.3454915 0.34549320.2 0.3454934 0.3454931

0.3 0.4755283 0.4755299 0.4755308 0.4755299
0.55901700.4 0.5590185 0.5590201 0.5590185

0.58778680.58778860.58778670.58778520.5

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 87–106
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Table X. Order of the present scheme (28). Problem 7.

y/� Exact h=�/10 h=�/20 SlopeError in UB

Error in U*B(UB*)(UB)

0.1 0.18163563 0.18165439 0.18163678 16.35 4.03
0.34549150 0.34551787 0.345493110.2 16.45 4.04

0.3 0.47552827 0.47555581 0.47552991 16.61 4.05
0.4 0.55901700 0.55904335 0.55901855 16.78 4.07

0.58778524 0.58781087 0.58778679 16.86 4.070.5

is seen that accurate results are obtained with the new exponential type schemes even with
coarse mesh.

Computations were also performed with step-length h=�/10. The ratio of the errors in
solutions using h=�/10 and �/20 is found to be approximately 16, confirming the fourth-
order accuracy of the scheme (Chen et al. [17]). The log(E) versus log(h) was also plotted
with h=�/10 and �/20, where E= �u(xi, yj)−uij �. The slope of the straight line was evalu-
ated and these values were found to be close to 4, again confirming the O(h4) accuracy
of the scheme. These results for u(0.7�, y) for values of y/� from 0.1 to 0.5 are given in
Table X.

6. CONCLUSIONS

In this paper, fourth-order accurate finite difference methods of an exponential nature are
presented for solving one- and two-dimensional convection–diffusion type differential equa-
tions with constant and variable coefficients. In the one-dimensional case, the approximat-
ing equation is developed using three points, which results in a tri-diagonal system. For the
two-dimensional problems, the schemes use a nine-point stencil. However, the SLOR ap-
proach with an alternating direction implicit procedure enables us to deal with only tri-
diagonal systems. The schemes were also applied with non-uniform mesh to resolve the
solution in regions of steep variations. For this implementation, an exponential finite differ-
ence scheme on non-uniform mesh is derived to approximate the differential equation at the
dividing point. By this approach, better results were obtained for particular problems even
with less numbers of nodal points.

The new schemes were applied to a number of linear and non-linear problems in one and
two dimensions. In particular, these schemes are very useful in the solution of fluid flow
problems. In all the problems, accurate and smooth solutions (without any oscillations)
were obtained. Most of the results obtained were compared with the earlier published
results. The h4 accuracy of the schemes in both one and two dimensions was also illus-
trated numerically. The effectiveness of the schemes developed has been demonstrated in
terms of accuracy and rate of convergence for seven test problems.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 87–106
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